Открытый доступ Открытый доступ  Ограниченный доступ Доступ для подписчиков

Защита силовых трансформаторов от токов геомагнитной индукции (по материалам СИГРЭ-2024) Часть 3

А. А. Кувшинов, В. В. Вахнина, А. Ю. Хренников, С. А. Михайлов

Аннотация


Представленный материал является попыткой классифицировать все опубликованные сообщения о геомагнитных воздействиях на электрические системы и показать их возникновение в контексте изменения солнечного цикла и геомагнитной активности за период с 1844 по 2016 г. А также показать механизм влияния токов геомагнитной индукции (ГИТ) на электротехническое электрооборудование, способы защиты силовых трансформаторов от ГИТ (по материалам СИГРЭ-2024, в частности доклад № 10784 — подкомитет A2).

 Части 1 и 2 были посвящены проблематике возникновения геомагнитных бурь и геомагнитным возмущениям в электроэнергетических системах, истории начала фиксации возникновения геомагнитных возмущений и регистрации геоиндуцированных токов в энергосистемах в разных странах в Северном и Южном полушариях Земли. Рассмотрены вопросы защиты силовых трансформаторов от токов геомагнитной индукции, применение резистивно-тиристорного заземления нейтрали и других способов защиты.

 В третьей части изложены вопросы испытаний силовых трансформаторов постоянным током для имитации геоиндуцированных токов, которые включают в себя общие положения об угрозе геомагнитно-индуцированных токов, схему высоковольтной линии постоянного тока HVDC Новой Зеландии, методологию инжекции постоянного тока, выбор трансформатора для эксперимента, измерения показателей качества напряжения, возникновение высших гармоник, вибрацию силовых трансформаторов, уровни звука от стенки бака трансформатора.

 Также рассматривается система контроля сопротивления контура заземления для проверки шагового напряжения и напряжения прикосновения.

DOI: 10.71527/EP.BE.2026.01.325


Ключевые слова


электроэнергетическая система, приполярные районы, геоиндуцированный ток, силовой трансформатор, резистивно-тиристорное заземление нейтрали.

Полный текст:

PDF

Литература


Larose D. The Hydro-Quйbec System Blackout of March 13, 1989,» in Report of Special Panel Session on Effects of Solar-Geomagnetic Disturbances on Power Systems // IEEE Power Engineering Society Summer Meeting, Long Beach, California, USA, 1989.

Marshall R. A, Geomagnetically induced currents in the New Zealand power network / R. A. Marshall, M. Dalzell, C. L. Waters, et al. // Space Weather. 2012. Vol. 10, No. 8.

Love J. J. Credible occurrence probabilities for extreme geophysical events: Earthquakes, volcanic eruptions, magnetic storms // Geophys. Res. Lett. 2012. Vol. 39. No. 10.

IEEE Guide for Establishing Power Transformer Capability while under Geomagnetic Disturbances // IEEE Stand. 2015. Vol. 57.

He J., Yu Z, Zeng R., Zhang B, Vibration and Audible Noise Characteristics of AC Transformer Caused by HVDC System Under Monopole Operation // IEEE Trans. Power Deliv. Oct. 2012. Vol. 27. No. 4. P. 1835 – 1842,

Zeng R. Study on Restraining DC Neutral Current of Transformer During HVDC Monopolar Operation / R. Zeng, Z. Yu, J. He J, et al. // IEEE Trans. Power Deliv. Oct. 2011, Oct. 2012, Vol. 26. Oct. 2012, No. 4. P. 2785 – 2791.

Girgis R. S., Ko C-D. Calculation techniques and results of effects of GIC currents as applied to large power transformers /// IEEE Trans. Power Deliv. Apr. 1992. Vol. 7. No. 2. P. 699 – 705.

Girgis R., Vedante K. Effects of GIC on power transformers and power systems // PES T&D. May 2012, P. 1 – 8.

Girgis R., Vedante K. Methodology for evaluating the impact of GIC and GIC capability of power transformer designs // in 2013 IEEE Power & Energy Society General Meeting, Jul. 2013. P. 1 – 5.

Girgis R. S. Experience with Impact of GIC on Noise Performance of Large Power Transformers / R. S. Girgis, M. S. Bernesjo, S. Hodgdon, et al. // in 2019 IEEE Power & Energy Society General Meeting (PESGM), Aug. 2019. P. 1 – 5.

Mac Manus D. H. Long-term geomagnetically induced current observations in New Zealand: Earth return corrections and geomagnetic field driver / D. H. Mac Manus, et al. // Space Weather. 2017. Vol. 15.No P. 1020 – 1038.

Ramirez-Nino J., Haro-Hernandez C., Rodriguez-Rodriguez J. H., Mijarez R. Core saturation effects of geomagnetic induced currents in power transformers // J. Appl. Res. Technol. Apr. 2016. Vol. 14. No. 2. P. 87 – 92.

Arrillaga J., Watson N. R. Power System Harmonics // John Wiley & Sons, 2004.

Rodger C. J. Geomagnetically Induced Currents and Harmonic Distortion: Storm-Time Observations From New Zealand / C. J. Rodger, et al. // Space Weather. Mar. 2020. Vol. 18.No 3.

X. Y. Teh. Investigation of Geomagnetically Induced Currents (GICs) Susceptibility of Different Three-Phase Power Transformer Cores / X. Y. Teh, Y. Xue, Z. Liang, et al. // 2022 7th IEEE Workshop on the Electronic Grid (eGRID). Nov. 2022. P. 1 – 5.

Girgis R. S., Bernesjo M. S. Magnitudes and characteristics of tank vibrations of Power Transformers // 2019 IEEE Power & Energy Society General Meeting (PESGM), Aug. 2019. P. 1 – 5.

Pei X. R., Liu L. G. Study on the Characteristics of Low-Frequency Vibration of the Core of Single Phase Transformer Set Caused by GIC // Appl. Mech. Mater. Dec. 2014. Dec. 2014. V ol. 716 –717. P. 1162 – 1167.

IEC 61936-1. Power installations exceeding 1 kV AC and 1,5 kV DC. — Part 1: AC. Int. Electrotechnical Commission, Ed: 1. 2021.

RAT. Real Decreto 337 / 2014, de 9 de mayo, por el que se aprueban el reglamento sobre condiciones técnicas y garantías de seguridad en instalaciones eléctricas de alta tensión y sus instrucciones técnicas complementarias ITC-RAT 01 a 23.

Grcev L., Popov M. On high-frequency circuit equivalents of a vertical ground rod / IEEE Transactions on Power Delivery. April 2005. Vol. 20, No. 2. P. 1598 – 1603.

Salarieh B., De Silva J., Kordi B. High frequency response of grounding electrodes: effect of soil dielectric constant // IET Gener. Transm. Distrib. 2020. Vol. 14. Iss. 15. P. 2915 – 2921.

Garnacho F., Khamlichi A., Valero A. Guide to EHV / HV cable sheath bonding application software // International Symposium on High Voltage Engineering (ISH), 2015.

IEEE Guide for Safety in AC Substation Grounding // IEEE Std 80-2013 (Revision of IEEE Std 80-2000 / Incorporates IEEE Std 80-2013 / Cor 1-2015). 15 May 2015. P. 1 – 226.

IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Grounding System // IEEE P81 / D11. August 2012. 28 Dec. 2012. P. 1 – 86.

Bourg S., Sacepe B., Debu T. Deep earth electrodes in highly resistive ground: frequency behaviour // Proceedings of International Symposium on Electromagnetic Compatibility, Atlanta, GA, USA. 1995, P. 584 – 589.

Shariatinasab R., Gholinezhad J. The effect of earthing system modeling on lightningrelated studies of transmission lines // Journal of Applied Research and Technology. 2017. 15. P. 545 – 554.

Van Waes J. B. M. Current distribution in LV networks during 1-phase MV short-circuit / J. B. M. van Waes, et al. // IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.00CH37077), Singapore. 2000. Vol. 4. P. 2385 – 2390.

Kuussaari M., Pesonen A. J. Earthing impedance measurements of substations. Paris, Cigre, 1978.

IEC 60909-3. Short Circuit Currents in Three-Phase A. C. Systems, Part 3: Currents During Two Separate Simultaneous Line-to-Earth Short Circuits and Partial Short-Circuits Currents Flowing Through Earth. Ed. II, 2003.

Visacro S. Lightning Response of Grounding Grids: Simulated and Experimental Results / S. Visacro, R. Alipio, C. Pereira, M. Guimarгes, et al. // IEEE Transactions on Electromagnetic Compatibility. Feb. 2015. Vol. 57. No. 1. P. 121 – 127.

Hasse P., Wiesinger J. Handbook for lightning and grounding. Pflaum, Munich, 1993, 4th edn.

Lanzerotti L. J., Thomson D. J., Maclennan C. G. (1999). Engineering issues in space weather // Modern Radio Science, M. A. Stuchly (Ed.), International Union of Radio Science (URSI), Oxford University Press, 1999. P. 25 – 50.

Boteler D. H., Pirjola R. J., Nevanlinna H. The effects of geomagnetic disturbances on electrical systems at the earth’s surface // Advances in Space Research. 1998. Vol. 22. No. 1. P. 17 – 27.

Lanzerotti L. J. Using the Guide of History // Space Weather. 2010. Vol. 8.

Gummow R. A. GIC effects on pipeline corrosion and corrosion control systems // Journal of Atmospheric and Solar-Terrestrial Physics. 2002. Vol. 64. No. 16. P. 1755 – 1764.

Ptitsyna N. G. Geomagnetic effects on mid-latitude railways: A statistical study of anomalies in the operation of signaling and train control equipment on the East-Siberian Railway / N. G. Ptitsyna, V. V. Kasinskii; G. Villoresi, et al. // Advances in Space Research, 2008. Vol. 42, No. 9. P. 1510 – 1514.

Wik M. Space weather events in July 1982 and October 2003 and the effects of geomagnetically induced currents on Swedish technical systems / M. Wik,, R. Pirjola, H. Lundstedt, et al. // Annales Geophysicae. 2009. Vol. 27. No. 4, P. 1775 – 1787.

Eroshenko E. A. Effects of strong geomagnetic storms on Northern railways in Russia / E. A. Eroshenko, A. V. Belov, D. Boteler, et al. // Advances in Space Research. 2010. Vol. 46, No. 9. P. 1102 – 1110.

Molinski T. S. Why utilities respect geomagnetically induced currents // Journal of Atmospheric and Solar-Terrestrial Physics. 2002. Vol. 64. No. 16, P. 1765 – 1778.

Kappenman J. G. (2007). Geomagnetic Disturbances and Impacts upon Power System Operation // The Electric Power Engineering Handbook, L. L. Grigsby (Ed.), CRC Press / IEEE Press, 2nd Edition. 2007. Chapter 16. P. 1 – 22.

Bolduc L GIC observations and studies in the Hydro-Quйbec power system // Journal of Atmospheric and Solar-Terrestrial Physics. 2002. Vol. 64. No. 16. P. 1793 – 1802.

Kappenman J. G., Albertson V. D. Bracing for the geomagnetic storms // EEE Spectrum. March 1990. P. 27 – 33.

Kappenman J. G. (2003). Storm sudden commencement events and the associated geomagnetically induced current risks to ground-based systems at low-latitude and midlatitude locations // Space Weather. 2003. Vol. 1. No. 3. P. 10 – 16.

Trivedi N. B. Geomagnetically induced currents in an electric power transmission system at low latitudes in Brazil: A case study / N. B. Trivedi, L. Vitorello, W. Kabata, et al. // Space Weather. 2007. Vol. 5. No. 4. S04004.

Bernhardi E. H.; Cilliers P. J., Gaunt C. T. Improvement in the modelling of geomagnetically induced currents in southern Africa / South African Journal of Science. July / August 2008. Vol. 104, P. 265 – 272.

Liu C.-M., Liu L.-G., Pirjola R. Geomagnetically Induced Currents in the HighVoltage Power Grid in China // IEEE Transactions on Power Delivery. 2009. Vol. 24. No. 4. P. 2368 – 2374.

Liu C.-M., Liu, L.-G., Pirjola, R., Wang, Z.-Z. Calculation of geomagnetically induced currents in mid- to low-latitude power grids based on the plane wave method: A preliminary case study // Space Weather. 2009. Vol. 7. No. 4., S04005.

Elovaara J. Geomagnetically induced currents in the Nordic power system and their effects on equipment, control, protection and operation / J. Elovaara, P. Lindblad, A. Viljanen, et al. // CIGRЙ Paper. 1992. No. 36 – 301.

Elovaara J. (2007). Finnish experiences with grid effects of GIC’s. In: Space Weather, Research towards Applications in Europe / J. Lilensten (Ed.) // Astrophysics and Space Science Library. 2007., 344, ESA, COST 724, Springer, Chapter 5.4. P. 311 – 326.

Pirjola R. J., Boteler D. H. Geomagnetically induced currents in European highvoltage power systems. CD ROM Proceedings of the Canadian Conference on Electrical and Computer Engineering (CCECE) // IEEE Ottawa, Ottawa, Canada, May 7 – 10, 2006, Paper 820.

Pirjola R. Geomagnetically Induced Currents During Magnetic Storms // IEEE Transactions on Plasma Science. 2000. Vol. 28. No. 6. P. 1867 – 1873.

Pirjola R., Pulkkinen, A., Viljanen A. Studies of space weather effects on the Finnish natural gas pipeline and on the Finnish high-voltage power system // Advances in Space Research. 2003. Vol. 31. No. 4. P. 795 – 805.

Pirjola R. Review on the calculation of surface electric and magnetic fields and of geomagnetically induced currents in ground-based technological systems // Surveys in Geophysics. 2002. Vol. 23. No. 1. P. 71 – 90.

Wik M. Calculation of geomagnetically induced currents in the 400 kV power grid in southern Sweden / M. Wik, A. Viljanen, R. Pirjola, et al, // Space Weather. 2008. Vol. 6. No. 7. S07005.

Pirjola R. Effects of space weather on high-latitude ground systems // Advances in Space Research. 2005. Vol. 36. No. 12. P. 2231 – 2240.

Pirjola R. Derivation of characteristics of the relation between geomagnetic and geoelectric variation fields from the surface impedance for a two-layer earth // Earth, Planes and Space. 2010. Vol. 62. No. 3. P. 287 – 295.

Trichtchenko L, Boteler D. H. Response of power systems to the temporal characteristics of geomagnetic storms. CD ROM Proceedings of the Canadian Conference on Electrical and Computer Engineering (CCECE) // IEEE Ottawa, Ottawa, Canada, May 7 – 10, 2006, Paper 387.

Trichtchenko L., Boteler D. H. Effects of recent geomagnetic storms on power systems // Proceedings of the 7-th International Symposium on Electromagnetic Compatibility and Electromagnetic Ecology, Saint-Petersburg, Russia, June 26 – 29, 2007, P. 265 – 268.

Watari S. Measurements of geomagnetically induced current in a power grid in Hokkaido, Japan / S. Watari, M. Kunitake, K. Kitamura, et al. // Space Weather. 2009. Vol. 7. No. 3. S03002.

Mäkinen T. Geomagnetically induced currents in the Finnish power transmission system. Finnish Meteorological Institute. Geophysical Publications. 1993. No. 32. Helsinki, Finland.

Viljanen A. T., Pirjola R. J., Pajunpää K. M., Pulkkinen A. A. Measurements of geomagnetically induced currents by using two magnetometers // Proceedings of the 8-th International Symposium on Electromagnetic Compatibility and Electromagnetic Ecology, Saint-Petersburg, Russia, June 16 – 19, 2009. P. 227 – 230.

Pulkkinen A., Viljanen A., Pajunpää K., Pirjola R. Recordings and occurrence of geomagnetically induced currents in the Finnish natural gas pipeline network // Journal of Applied Geophysics. 2001. Vol. 48. No. 4, P. 219 – 231.

Viljanen A. Recordings of geomagnetically induced currents and a nowcasting service of the Finnish natural gas pipeline system / A. Viljanen, A. Pulkkinen, R. Pirjola, et al. // Space Weather. 2006. Vol. 4. No. 10. S10004.

Pirjola R. Space weather risk / R. Pirjola, K. Kauristie, H. Lappalainen, et al. // Space Weather. 2005. Vol. 3. No. 2. S02A02.

Boteler D. H., Pirjola R. J. The complex-image method for calculating the magnetic and electric fields produced at the surface of the Earth by the auroral electrojet // Geophysical Journal International. 1998. Vol. 132. No. 1. P. 31 – 40.

Pirjola R., Viljanen A. Complex image method for calculating electric and magnetic fields produced by an auroral electrojet of finite length // Annales Geophysicae. 1998. Vol. 16. No. 11. P. 1434 – 1444.

Kaufman A. A., Keller G. V. The Magnetotelluric Sounding Method, Methods in Geochemistry and Geophysics, 15, Elsevier Scientific Publishing Company, 1981.

Pirjola R. Properties of matrices included in the calculation of geomagnetically induced currents (GICs) in power systems and introduction of a test model for GIC computation algorithms // Earth, Planets and Space. 2009. Vol. 61. No. 2, P. 263 – 272.

Häkkinen L., Pirjola R. Calculation of electric and magnetic fields due to an electrojet current system above a layered earth // Geophysica. 1986. Vol. 22. Nos.1 – 2, P. 31 – 44.

Pirjola R. J., Häkkinen L. V. T. Electromagnetic Field Caused by an Auroral Electrojet Current System Model // Environmental and Space Electromagnetics, H. Kikuchi (Ed.), Springer-Verlag, Tokyo, Printed in Hong Kong. 1999. Chapter 6.5. P. 288 – 298.

Viljanen A. Fast computation of the geoelectric field using the method of elementary current systems and planar Earth models / A. Viljanen, A. Pulkkinen, O. Amm, et al. // Annales Geophysicae. 2004. Vol. 22. No. 1. P. 101 – 113.

Cagniard L. Basic theory of the magnetotelluric method of geophysical prospecting // Geophysics. 1953. Vol. 18P. 605 – 635.

Pirjola R. Electromagnetic induction in the earth by a plane wave or by fields of line currents harmonic in time and space // Geophysica. 1982. Vol. 18. Nos. 1 – 2. P. 1 – 161.

Lehtinen M., Pirjola R. Currents produced in earthed conductor networks by geomagnetically-induced electric fields // Annales Geophysicae. 1985. Vol. 3. No. 4.P. 479 – 484.

Pirjola R. Effects of interactions between stations on the calculation of geomagnetically induced currents in an electric power transmission system // Earth, Planets and Space. 2008. Vol. 60, No. P. 743 – 751.

Boteler D. H., Pirjola R. J. Modelling Geomagnetically Induced Currents produced by Realistic and Uniform Electric Fields // IEEE Transactions on Power Delivery, 1998. Vol. 13. No. 4. P. 1303 – 1308.

Pirjola R. Calculation of geomagnetically induced currents (GIC) in a high-voltage electric power transmission system and estimation of effects of overhead shield wires on GIC modelling // Journal of Atmospheric and Solar-Terrestrial Physics. 2007. Vol. 69. No. 12. P. 1305 – 1311.

Pirjola R., Boteler D., Trichtchenko L. Ground effects of space weather investigated by the surface impedance. Earth, Planets and Space. 2009. Vol. 61. No. 2. P. 249 – 261.

Pirjola R., Lehtinen M. Currents produced in the Finnish 400 kV power transmission grid and in the Finnish natural gas pipeline by geomagneticallyinduced electric fields // Annales Geophysicae. 1985. Vol. 3. No. 4. P. 485 – 491.

Viljanen A. Geomagnetically Induced Currents in the Finnish Natural Gas Pipeline // Geophysica. 1989. Vol. 25. Nos.1 – 2. P. 135 – 159.

Boteler D. H. Distributed-Source Transmission Line Theory for Electromagnetic Induction Studies // Supplement of the Proceedings of the 12th International Zurich Symposium and Technical Exhibition on Electromagnetic Compatibility, Zьrich, Switzerland, February 18 – 20, 1997, OE7. P. 401 – 408.

Boteler D., Cookson M. J. Telluric currents and their effects on pipelines in the Cook Strait region of New Zealand // Materials Performance, March 1986. P. 27 – 32.

Pulkkinen A. Modelling of space weather effects on pipelines / A. Pulkkinen; R. Pirjola, D. Boteler, et al. // Journal of Applied Geophysics. 2001. Vol. 48. No. 4. P. 233 – 256.

Электротехнический справочник: В 3-x т., Т. 3. В 2-x кн., Кн. 1. Производство и распределение электрической энергии / (Под общей редакцией профессоров МЭИ И. Н. Орлова (гл. ред.) и др. – 7-е изд., испр. и доп. М.: Энергоатомиздат, 1988.

Тихомиров П. М. Расчет трансформаторов: учеб. пособие для вузов. –6-е изд., перераб. М.: Энергия, 2014.

Kappenman J. G., Albertson V. D. Bracing for the Geomagnetic Storm // IEEE Spectrum. 1990. Vol. 28. No. 3. P. 27 – 33.

Pirjola R. Space weather effects on electric power transmission grids and pipelines / R. Pirjola, A. Vilijanen, A. Pulkkinen, et al. // Effect of space weather on technology infrastructure. 2004. P. 235 – 256.

Walling R. A., Khan A. H. Characteristics of transformer exciting current during geomagnetic disturbance // IEEE Trans on Power Delivery. 1991. Vol. 6. No. 4. P. 1707 – 1714.

Кувшинов А. А., Вахнина В. В., Черненко А. Н., Пудовинников Р. Н. Реактивная нагрузка синхронного генератора при насыщении магнитной системы блочного трансформатора под воздействием квазипостоянных токов // Промышленная энергетика. 2021. № 4. С. 11 – 19.

ГОСТ IEC 60034-3–2015. Машины электрические вращающиеся. Ч. 3. Специальные требования для синхронных генераторов, приводимых паровыми турбинами и турбинами на сжатом газе.

ГОСТ 5616–89. Генераторы и генераторы-двигатели электрические гидротурбинные. Общие технические условия.

Методические указания по технологическому проектированию гидроэлектростанций и гидроаккумулирующих электростанций. Приложение к приказу министерства энергетики РФ от 16 августа 2019 г. № 857.


Ссылки

  • На текущий момент ссылки отсутствуют.


© 1998 — 2025 НТФ «Энергопрогресс»


Адрес редакции:
129090, г. Москва, ул. Щепкина, д. 8
Телефон: +7 495 234-74-21
E-mail: energetick@mail.ru